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Abstract

Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to
climate change so that, in the future, a climate penalty could jeopardize the expected
efficiency of air pollution mitigation measures. A common method to assess the impact
of climate on air quality consists in implementing chemistry-transport models forced by5

climate projection. However, the computing cost of such method requires optimizing
ensemble exploration techniques.

By using a training dataset of deterministic projection of climate and air quality over
Europe, we identified the main meteorological drivers of air quality for 8 regions in Eu-
rope and developed simple statistical models that could be used to predict air pollutant10

concentrations. The evolution of the key climate variables driving either particulate or
gaseous pollution allows concluding on the robustness of the climate impact on air
quality.

The climate benefit for PM2.5 was confirmed −0.96 (±0.18), −1.00 (±0.37), −1.16
± (0.23) µgm−3, for resp. Eastern Europe, Mid Europe and Northern Italy and for the15

Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy regions a cli-
mate penalty on ozone was identified 10.11 (±3.22), 8.23 (±2.06), 9.23 (±1.13), 6.41
(±2.14), 7.43 (±2.02) µgm−3. This technique also allows selecting a subset of relevant
regional climate model members that should be used in priority for future deterministic
projections.20

1 Introduction

The main drivers of air pollution are (i) emission of primary pollutants and precursors of
secondary pollutants, (ii) long-range transport, (iii) atmospheric chemistry and (iv) me-
teorology (Jacob and Winner, 2009). We can thus anticipate that air quality is sensitive
to climate change taking as example the link between heat waves and large scale25

ozone episodes (Vautard et al., 2005) as well as background changes. But in addition
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to the direct impact of climate change on air pollution through the change in frequency
and severity of synoptic conditions conducive to the accumulation of air pollutants we
must also note that climate can have an impact on anthropogenic and biogenic emis-
sion of pollutants and precursors (Langner et al., 2012b) as well as on changes in
the global background of pollution, and therefore long range transport (Young et al.,5

2013). There is therefore a concern that in the future, climate change could jeopardize
the expected efficiency of pollution mitigation measures based on emission reductions.
Hence the need to characterize and quantify uncertainties related to the impact of cli-
mate change.

The most widespread technique used to assess the impact of climate change on10

air quality consists in implementing regional climate projections in Chemistry Transport
Models (CTM) (Jacob and Winner, 2009). The computational cost of such initiative
is substantial given that it involves multi-annual global climate simulations, dynami-
cal downscaling through regional climate simulations and ultimately CTM simulations.
Besides the computational cost, it also raises technical difficulties in collecting, trans-15

ferring and managing large amount of model data. Altogether, these difficulties led to
the use of a single source of climate projections (Meleux et al., 2007; Katragkou et al.,
2011; Jiménez-Guerrero et al., 2012; Langner et al., 2012b; Colette et al., 2013; Hede-
gaard et al., 2013; Varotsos et al., 2013) or two at most in published studies (Huszar
et al., 2011; Juda-Rezler et al., 2012; Langner et al., 2012a; Manders et al., 2012; Co-20

lette et al., 2015). And the choice of such a source was often a matter of opportunity
rather than an informed choice. These studies capture trends and variability but their
representation of uncertainty is not satisfactory in the climate context. Moreover the di-
vergence in climate impact between two studies for the same pollutant supports again
the need of such ensemble approaches (e.g. Lecœur et al., 2014 find a climate benefit25

for PM2.5 in Europe while Manders et al., 2012, suggest the opposite). Thus the lack
of multi-model approach in air quality and climate projections is a serious caveat that
needs to be tackled in order to comply with best practices in the field of climate impact
research, where ensemble approaches is state of the art.
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Hence, in order to assess the climate uncertainties on surface ozone and partic-
ulate matter over Europe in a changing climate, we developed a new method which
avoids forcing a CTM with an ensemble of climate models. It consists in using a simple
statistical model applied to an ensemble of regional climate projections.

Using a training dataset of deterministic projection of climate and air quality over Eu-5

rope, we identified the main meteorological drivers of air quality for 8 regions in Europe
and developed corresponding simple statistical models that could be used to predict
air pollutant concentrations. These statistical models are subsequently applied to an
ensemble of regional climate models (Jacob et al., 2014) to assess the robustness of
the air quality projections. By discussing the evolution of the key climate variables of10

each member of the climate ensemble driving either particulate or gaseous pollution
we can conclude on the robustness of the climate impact on air quality. Besides al-
lowing a quantification of uncertainties, this technique also allows selecting a subset
of relevant regional climate model members that should be used in priority for future
ensemble deterministic projections.15

The use of such a methodology is inspired from earlier work in the field of hydrol-
ogy, where Vano and Lettenmaier (2014) have estimate future stream-flow by using
a sensitivity-based approach which could be applied to generate ensemble simula-
tions. Such hybrid statistical and deterministic approach have also been used in the
past in the field of air quality, but mostly for near-term forecasting, relying on statistical20

models of various complexity (i.e. Land Use Regression, Neural Network, Nonlinear re-
gression, Generalized Additive Models. . .) (Prybutok et al., 2000; Schlink et al., 2006;
Slini et al., 2006). The most relevant example in the context of future air quality projec-
tion is that of (Lecœur et al., 2014), that use the technique of wind regime analogues,
although they did not apply their approach to an ensemble of climate projection.25

This paper deals with all the steps needed to build the proxy of ensemble and the
results obtained. First (Sect. 2) we present the methods and input data: the design of
the statistical model of the air quality response to meteorological drivers is presented
as well as the deterministic modelling framework used to create our training dataset.
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Section 3 focuses on results. The deterministic air quality projections are presented for
ozone peaks and PM2.5 in Sect. 3.1. The selected statistical models for each region are
evaluated in Sect. 3.2. The relevance of the statistical method to evaluate uncertainties
and optimize ensemble exploration is discussed in Sect. 4.

2 Development of statistical models of the air quality response to5

meteorological variability

2.1 Method

We consider ozone and PM2.5 as the main pollutants of interest for both purposes: pub-
lic health (Dockery and Pope, 1994; Jerrett et al., 2009) and climate interactions (IPCC
2013). For both of them, simple linear models have been developed using meteoro-10

logical variables as predictants: near surface temperature (T2m), daily precipitation,
incoming short wave radiation, planetary boundary layer (PBL) depth, surface wind
(U10m) and specific humidity.

The choice of these meteorological variables is based on an analysis of the literature
on phenomenological links between air pollution and meteorology. For PM2.5, turbulent15

mixing, often related to the depth of the planetary boundary layer, dominates (McGrath-
Spangler et al., 2015). Decrease of PBL depth is both related to (i) the concentration
of pollutants (Jiménez-Guerrero et al., 2012) and (ii) their dry deposition because of
the vicinity of surface receptors (Bessagnet et al., 2010). The wind plays also multi-
ple roles. High wind speed favors the dilution of particulate matter (Jacob and Win-20

ner, 2009) but enhances sea-salt and dust mobilization (Lecœur and Seigneur, 2013).
Precipitation is often reported as a major sink of PM2.5 through wet scavenging (Ja-
cob and Winner, 2009). Water vapor, through specific humidity, participates in aerosol
formation during nucleation processes. Moreover it can have an impact on the rates
of certain chemistry reactions, as well as temperature. The temperature impacts are25

difficult to isolate because of the PM2.5 mix of components (organic, inorganic, dust,
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sea-salt. . . ) and compensating effects. For instance, according to (Jacob and Winner,
2009), a temperature rise has opposite effects for sulfate and nitrate (resp. increase and
decrease concentrations). But for the overall PM2.5 mass, an increase in temperature
will decrease the concentration as a result of higher volatility and subsequent higher
aerosol to gas phase conversion (Megaritis et al., 2014). In the case of the chemistry5

and transport model used in this study, CHIMERE (Menut et al., 2013), the volatile
species in the gas and aerosol phases are assumed to be in chemical equilibrium.
This thermodynamic equilibrium, computed by ISORROPIA (Fountoukis and Nenes,
2007), is driven by temperature and humidity and conditions the concentration of sev-
eral aerosol species (ammonium, sodium, sulfate, nitrate and so on). Thus a major role10

of these variables is expected in this study.
The impact on ozone or its precursors are presented here. A temperature rise cat-

alyzes atmospheric chemistry (Doherty et al., 2013). Moreover increasing temperature
and solar radiation enhance isoprene emission which is a biogenic precursor of ozone
(Langner et al., 2012b; Colette et al., 2013). Finally changing the amount of incoming15

short wave radiation will play a role on the photochemistry. Indeed short wave radia-
tion contributes both as a sink (water vapor and radiation leads to ozone photolysis)
and a source (nitrogen dioxide photolysis produces ozone) of ozone (Doherty et al.,
2013). The PBL effect on ozone varies with the meteorological conditions. Increasing
the depth dilutes the ozone concentrations, but it also favors the mixing of its precur-20

sors which leads to an ozone concentrations increase (Jacob and Winner, 2009). The
amount of water vapor in the atmosphere mostly drives the abundance of the hydroxyl
radical (OH). OH is implied in ozone destruction through several processes (i.e. pho-
tolysis, HNO3 production) (Varotsos et al., 2013). It is also implied in ozone production
via the formation of NO2. Some VOC are oxidized by OH and form RO2 which reacts25

with NO to form NO2, a precursor of ozone (Seinfeld and Pandis, 2008).
The design of the statistical model is deliberately limited to a simple bivariate linear

least square based using two meteorological variables. In order to facilitate the geo-
physical interpretation, using meteorological variables instead of a linear combination
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of multiple variables (i.e. Prior Principal Component Analysis axes) is preferred. The
main caveat is that it implies independence between meteorological variables.

While the skill of the statistical model could have improved by using a prior principal
component analysis, a non-linear model, or more than 2 predictors, we considered that
remaining in a 2-D physical parameter space was important for the purpose of the5

discussion as will be illustrated below. Hence the accuracy of the statistical proxy could
be refined but we argue that our approach is satisfactory to assess uncertainty and
optimize ensemble exploration.

Such a statistical model is built for each of the eight European climatic regions set
in the PRUDENCE project (Christensen and Christensen, 2007). These regions are:10

British Isles (BI), Iberian Peninsula (IP), France (FR), Mid Europe (ME), Scandinavia
(SC), Northen Italy (NI – referred to as the Alps in Climate studies but chiefly influenced
by the polluted Po-Valley in the air quality context), Mediterranean (MD) and Eastern
Europe (EA). For each of these regions, a spatial average of predictants (meteorolog-
ical variables) and predicted (concentrations) values is taken. The statistical model is15

based on daily averages for all meteorological and air pollutant concentrations except
ozone for which the daily maximum of 8 h running means is used. The seasonality is
removed by subtracting the average seasonal cycle over the historical period.

2.2 Training and validation datasets

The datasets used to fit and test the statistical models are produced by the regional20

climate and air quality modelling framework presented in Colette et al. (2013). By using
a full suite of models covering both climate and chemistry from the global to the regional
scale, they could produce long term air quality projections over Europe. The Earth
System Model (ESM) which drives these simulations is the IPSL-CM5A-MR (Dufresne
et al., 2013). The global data used in this study were produced for the Coupled Model25

Intercomparison Project Phase 5 initiative (CMIP5) (Taylor et al., 2012; Young et al.,
2013). Then the climate data obtained by the ESM are dynamically downscaled by the
regional climate model WRF (Skamarock et al., 2008). The spatial resolution is 0.44◦
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over Europe (Colette et al., 2013). These simulations were part of the low-resolution
simulations performed within the framework of the European-Coordinated Regional
Climate Downscaling Experiment program (EURO-CORDEX) (Jacob et al., 2014). The
corresponding hindcasts were evaluated in Kotlarski et al. (2014). Finally the regional
climate fields are used to drive the CTM CHIMERE (Menut et al., 2013), for the pro-5

jection of air quality under changing climate. Since we are only interested in the effect
of climate change, pollutant emissions remain constant at their level of 2010, as pre-
scribed in the ECLIPSE-V4a dataset (Klimont et al., 2015). Similarly, chemical bound-
ary conditions prescribed with the INCA model (Hauglustaine et al., 2014) as well as
the land-use are also kept constant.10

The training dataset used to build the statistical models is the historical air quality
simulations (1976–2005), while future air quality and climate projections will be used
for testing purposes. In order to evaluate the uncertainty related to climate change,
the statistical models should be efficient to reproduce the pollutant concentrations over
the historical period (training period) and to predict them (testing period). We choose15

the future time period as validation dataset in order to challenge the statistical model
trained over a given validity range that is expected to be exceeded in the future. The
different tests performed are explained Sect. 3.2.

2.3 Regional climate projection ensemble

To evaluate the uncertainty, the statistical model of air quality is used in predic-20

tive mode using the regional climate projections performed in the framework of the
EURO-CORDEX program (Jacob et al., 2014). The combinations of global/regional
climate models used here are: CanESM2/RCA4; CSIRO-Mk3-6-0/RCA4; CNRM-
CM5-LR/RCA4; EC-EARTH/RACMO2; EC-EARTH/RC4; GFDL-ESM2M/RCA4; IPSL-
CM5A-MR/RCA4; IPSL-CM5A-MR/WRF; MIROC5/RCA4; MPI-ESM-LR/RCA4; MPI-25

ESM-LR/CCLM; NorESM1-M/RCA4 (see Jacob et al., 2014, for details on the model
nomenclature).
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The performances of the global models used to drive the regional projections have
been evaluated (Jury, 2012; Cattiaux et al., 2013). The performances of the regional
model driven by the ERA-Interim have been explored in Kotlarski et al. (2014). No study
has evaluated the bias of the global/regional combinations even if it could be relevant
since the combination of a driving model and a regional model is not the simple addition5

of their bias. It is therefore safer to use such data to assess relative changes rather than
absolute levels.

3 Results

In this part we studied the end (2071–2100) of the century, for one scenario (RCP8.5).
This 30 years period is chosen to be representative regardless of the inter-annual vari-10

ability (Langner et al., 2012a). The RCP8.5 is a highly energy-intensive scenario (ra-
diative forcing level equal to 8.5 Wm−2) (van Vuuren et al., 2011). We focus on the
RCP8.5 and the end of the century to obtain the most significant results.

3.1 Climate and air quality projections

3.1.1 PM2.515

Figure 1a represents the 30 years average PM2.5 concentrations over the historical
period (1976 to 2005). Higher concentrations are modeled over European pollution
hotspots: Benelux, Po Valley, Eastern Europe and large cities. A similar pattern is found
in the future (RCP8.5 – average over the period 2071–2100) albeit with lower concen-
trations (Fig. 1b). The difference (future minus historical) is given in Fig. 1c where the20

statistical significance of the changes was represented by black points at each grid
points and evaluated by a Student t test with Welch variant at the 95 % confidence
level based on annual mean. The decrease is statistically significant over most of the
domain.
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Overall, we identify a climate benefit on particulate matter pollution similarly to Co-
lette et al. (2013), Lecœur et al. (2014) but in opposition to Manders et al. (2012).
Hedegaard et al. (2013) finds a decrease in high latitude and an increase in low lati-
tude. The role of future precipitation projections and more efficient wet scavenging has
often been pointed out to explain such a future evolution of particulate matter (Jacob5

and Winner, 2009). However, the lack of robustness in precipitation evolution over ma-
jor European particulate pollution hotspots in regional climate models (Jacob et al.,
2014) challenges the confidence we can have in single model air quality and climate
projection, supporting again the need for ensemble approaches.

3.1.2 Ozone peaks10

Figure 1d represents the summer (JJA) average ozone daily maximum concentrations
over the historical period (1976–2005). A North–South gradient appears with lower con-
centration in the North and higher concentration fields over the Mediterranean Sea. The
Fig. 1e corresponds to the summer average ozone projection of the RCP8.5 at the end
of the century (2071–2100). A similar pattern is found, with higher concentrations in the15

southern part of the domain. The map of the difference, Fig. 1f, (RCP8.5 – actual) in-
dicates an increase of ozone concentrations over Eastern Europe, Mediterranean land
surfaces, and North Africa and a decrease over British Isles and Scandinavia. Most of
the changes are statistically significant except over West Europe. This concentration
rise is frequently associated to an increase of temperature in the literature (Meleux20

et al., 2007; Katragkou et al., 2011), see Sect. 2 above for an review of physical and
chemical processes underlying this association.

Following Langner et al. (2012b), Manders et al. (2012) and Colette et al. (2013,
2015) we confirm overall the fact that climate change constitutes a penalty for surface
ozone in Europe.25
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3.2 Statistical models

Here we introduce the statistical models trained over the historical period. First we dis-
cuss the expected impact of key meteorological processes on pollutants concentration
on the basis of the model correlation and put our results in perspective with the key
driving factors reported in the literature. Then we evaluate the performance of statisti-5

cal models over the future period in order to discard regions and pollutants where the
skill of the statistical model is too small to draw robust conclusions on the uncertainties
of projections.

3.2.1 PM2.5

The skill and predictors for bivariate linear least square statistical models fitted for each10

region are given in Table 1. The depth of the planetary boundary layer is identify as the
major meteorological driver for PM2.5 which is a different finding compared to (Megaritis
et al., 2014) who report a smaller impact for the PBL depth. Near surface temperature
is often selected as second predictor. The wind is pointed out as a relevant predictor
twice and only for coastal regions (resp. BI and MD) where the sea-salt dominates.15

Last, precipitation is selected only once as 2nd variable for the Iberian Peninsula (IP).
It could be partly due to our choice of a linear correlation whereas a logical regres-
sion would have been more efficient given that PM correlations are sensitive to the
presence/absence of precipitation rather than their intensity. It is difficult to assess ob-
jectively whether the larger role of temperature than precipitation in our findings is an20

artifact related to the design of the statistical model. The importance of precipitation in
the impact of climate change on particulate pollution is often speculated in the litera-
ture, with little quantitative evidence. The bilinear model used here is simplistic, but it
offers an objective quantification of that role. It should be added that the importance
of temperature is well supported by the volatilization process for SIA and SOA. It is25

also supported by the pattern of projected PM2.5 change, which is spatially correlated
with present-day PM2.5 concentration. This spatial correlation suggests an impact of
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a uniform driver which points towards temperature rather than precipitation change
that exhibits a strong north–south gradient in Europe.

Then the predictive skill of these models is tested over the period 2071–2100 by
computing the Normalized Root Mean Squared Error (NRMSE) between the statisti-
cally predicted PM2.5 (concentrations estimated with the statistical models), and the5

results of the deterministic regional air quality and climate modelling suite presented in
Sect. 2.2.

Figure 2 shows, for each region, the scatter between r-squared over the historical
period and the NRMSE in predictive mode for the RCP8.5 at the end of the century.
The NRMSE is equal to the RMSE divided by the standard deviation of the reference:10

air quality projection (2071–2100). It allows describing the predictive power of a model,
if the result is “less or equal to 1” then the model is a better predictor of the data than
the data mean (Thunis et al., 2012). We expect regions where the correlation over the
historical period is low to be poorly captured by the statistical model in the future. The
fact that the good correlation for EA and ME are associated with a NRMSE around15

0.7 in the future indicates either that the main meteorological drivers in the future will
remain within their range of validity or that extrapolation is a viable approximation.

This feature gives confidence in using statistical models for these regions in pre-
dictive mode. For the NI region, the NRMSE is acceptable (below 0.85) even if the
r-squared is low.20

Considering that the model skill was satisfactory for the EA, ME and NI regions, we
decided to focus on these regions for the uncertainty assessment in the remainder of
this paper.

3.2.2 Ozone peaks

For summertime ozone peaks, as expected, near surface temperature and incoming25

short wave radiation are identified as the two main meteorological drivers for most re-
gions (cf. Table 2). Concerning the region EA, the drivers are near surface temperature
and specific humidity. The skill of the statistical model is very low over the British Isles
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and Scandinavia. This is because ozone pollution in these regions is largely influenced
by the long range transport of air pollution. It is therefore poorly correlated with the
local variability of meteorological variables. The poor performances of the statistical
model over the Mediterranean region are more surprising. The lower variability of tem-
perature and incoming shortwave radiation in this region makes them less relevant to5

explain ozone concentrations.
The linear models that are ultimately considered efficient enough in terms of corre-

lation to capture the ozone concentrations over the historical period are those of the
following regions: EA, FR, IP, ME and NI.

This selection is further supported by applying the same approach as for PM2.5 to10

evaluate the predictive skill of the models. The regions mentioned above where the
correlation of the statistical model is low (BI, SC and MD) stand out on this graph (cf.
Fig. 2). So that the regions: EA, FR, IP, ME and NI are selected for the uncertainty
assessment in the remainder of this paper.

4 Evaluation of the uncertainty15

To evaluate the robustness of the air quality and climate projection we use the statis-
tical models introduced in Sect. 2 applied to regional climate projections to develop
a proxy of ensemble of air quality and climate projections for each region. This proxy of
ensemble will be used to identify the subset of regional climate projections that should
be used in priority in the deterministic modelling suite, but it can also given an indica-20

tion on the robustness of the climate impact on air quality by comparing the evolution
of key climate drivers.

4.1 PM2.5

In order to assess qualitatively the robustness of the evolution of regional climate vari-
ables having an impact on air quality, we first design a 2-D parameter space where the25
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isopleths of statistically predicted pollutant concentrations are displayed (background
of Fig. 3). Then the distributions of historical and future meteorological variables as
extracted from the regional climate projections are added to this parameter space. For
each Regional Climate Projection, we show the average of the two driving meteorologi-
cal variables as well as the 70th percentile of their 2-D-density plot, i.e. the truncation at5

the 70th quantile of their bi-histogram which means that 70 % of the simulated days lie
within the contour. Both historical and future climate projections (here for the RCP8.5
scenario and the 2071–2100 period) are displayed on the parameter space. The cli-
mate projections are all centered on the IPSL-CM5A-MR/WRF member so that only
the distribution of the later stands out for the historical period.10

As pointed out in Table 1, the main meteorological drivers are the depth of the PBL
and near surface temperature for the example of Eastern Europe region displayed on
Fig. 3. The statistically modeled isopleths in the background of the figure show that
PM2.5 concentration decrease when the depth of the PBL increases (x axis), or when
temperatures increase (y axis). The comparison of historical and future distributions15

shows that, even though the PBL depth constitutes the most important meteorological
driver for PM2.5, it does not evolve notably in the future (cf. Fig. 3). On the contrary,
the secondary driver (surface temperature) increases significantly, leading to a de-
crease of PM2.5 concentrations. The small spread of RCMs in terms of both evolution
of PBL depth and temperature suggests that this climate benefit on particulate pol-20

lution is a robust feature. However, on Fig. 3, CSIRO-Mk3-6-0/RCA4 and MPI-ESM-
LR/CCLM present respectively the largest and the smallest PM2.5 concentrations de-
crease. Those isopleths present the same characteristics for ME and NI regions (cf.
Figs. S1 and S4 in the Supplement).

The qualitative evolution represented on Fig. 3 is further quantified by applying the25

linear model to the future meteorological variables in the regional climate projections.
These results are represented by the probability density functions of the predicted con-
centrations of each GCM/RCM couple minus the estimated values for the historical
run (e.g. 2071–2100 vs. 1976–2005; cf. Fig. 4). For EA and ME, the longer tail of the
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probability density function of MPI-ESM-LR/CCLM compare to the average of the mod-
els reflects that stronger pollution episode will occur in the future even if the mean of
the concentrations are lower than the average of the ensemble (cf. Fig. 4 for EA and
Fig. S2 for ME).

Besides the distribution, the ensemble mean and standard deviation of the estimated5

projected change in PM2.5 concentrations has been quantified (Table 3). All the se-
lected regions depict a significant decrease of the PM2.5 concentrations across the
multi-model proxy ensemble indicating that the climate benefit on particulate matter in
a robust feature in these regions. The magnitude of the decrease depends on the re-
gion and is expressed as follow ensemble mean (± standard deviation): −0.96 (±0.18),10

−1.00 (±0.37), −1.16 (±0.23) µgm−3, for resp. EA, ME and NI (cf. Table 3).
In order to explain the differences in the response of individual RCM in the ensemble,

we need to explore the historical meteorological variables PDF and to compare them
with the evolution of IPSL-CM5A-MR/WRF. The comparison of the historical distribution
for the temperature reflects the stronger extremes of IPSL-CM5A-MR/WRF (e.g. colder15

than the others when it is cold). Only in NI our model lies in the mean of the ensemble.
Concerning the PBL depth, the values are similar than the average of the ensemble for
ME even if MPI-ESM-LR/RCA4 and EC-EARTH/RACMO2 present the largest values.
IPSL-CM5A-MR/WRF has a thinner boundary layer for NI and a larger for EA than the
average but the differences are limited (cf. Fig. 5).20

CSIRO-Mk3-6-0/RCA4 depicts the most important decrease for all the selected re-
gions except over NI where it is exceed by CanESM2/RCA4 (resp. 1.51 vs. 1.61 µgm−3;
cf. Table 3). This is linked to a larger temperature rise compare to the other models and
a larger boundary layer height evolution compare to the other member of the ensemble
for these regions (cf. Fig. 3). CanESM2/RCA4 and CSIRO-Mk3-6-0/RCA4 reflects the25

same finding for the region ME.
MPI-ESM-LR/CCLM presents the smallest decrease of PM2.5 for each of the se-

lected regions (e.g. over ME is almost 3 times smaller than the largest decrease). As
already mentioned above, the particular tails of the distributions for EA and ME indi-
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cate more pollution episodes in the future. The historical distributions exhibit a larger
boundary layer than the average models of the ensemble and a similar temperature.
Thus, the low PM2.5 concentration decrease is explained by the small evolution of the
meteorological drivers as shown by the Fig. 3. The evolution of the PBL depth depicts
the relevance of this meteorological variable: a large part of the contour overlaps the5

red part of the background. Hence it indicates more days with a thinner layer which is
directly related to more PM25 pollution episodes.

Overall we conclude that the climate benefit is confirmed for the PM2.5 for each
selected regions. The result is robust since all the proxy of ensemble built with the
bivariate statistical model applied to regional climate projection present similar den-10

sity functions and average projected changes. The regional climate models that ex-
hibit a specific response are CanESM2/RCA4; CSIRO-Mk3-6-0/RCA4 and MPI-ESM-
LR/CCLM, which should therefore be considered for a more in-depth evaluation using
explicit deterministic projections.

4.2 Ozone peaks15

For most of the selected regions (FR, IP, ME and NI,) the main drivers are the same
(i.e. near surface temperature and short wave radiation) except for EA where the ma-
jor drivers are temperature and specific humidity. As discussed above for PM2.5, every
figure (Figs. 3, S1, and S4) shows an offset of the 2-D-density plot along the tem-
peratures axe. The projected future is warmer than the historical period. According20

to the ozone concentrations predicted by the linear model (displayed in the back-
ground of Fig. 3) these offsets lead to more ozone episodes. This trend appears for
the entire models ensemble so that we can conclude with confidence that this climate
penalty is a robust feature even if the specific distribution shape of some of the mod-
els stand out (CanESM2/RCA4; CNRM-CM5-LR/RCA4; CSIRO-Mk3-6-0/RCA4; IPSL-25

CM5A-MR/WRF).
The ozone increase of the ensemble is equal 10.11 (±3.22), 8.23 (±2.06), 9.23

(±1.13), 6.41 (±2.14), 7.43 (± 2.02) µgm−3 for EA, FR, IP, ME and NI (cf. Table 3).
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These values confirm the statistically significant climate penalty (the mean is at least
two times larger than the standard deviation). However, as already mentioned for Fig. 3,
we find differences among the models. Here the meteorological variables and their
evolution are discussed to explain these differences. The meteorological distributions
are slightly different between the models of the ensemble: the summertime tempera-5

ture predicted by IPSL-CM5A-MR/WRF has stronger extremes than the other models.
Moreover it is warmer than the ensemble in EA. The specific humidity is around 1.5
times larger for IPSL-CM5A-MR/WRF than for the other models. Concerning the last
meteorological variable, incoming short wave radiation, IPSL-CM5A-MR/WRF lies in
the average (cf. Figs. S6 and S9). Only EC-EARTH/RACMO2 and MPI-ESM-LR/RCA410

exhibits lower values (around half of the average for MPI-ESM-LR/CCLM).
The magnitude of the ozone rise changes between the models and the regions. Note

that CanESM2/RCA4 exhibits the most important discrepancy (i.e. around 1.5 times the
ensemble mean) followed by CSIRO-Mk3-6-0/RCA4 for each selected regions. This
is explained by the significant temperature increase during summertime which is the15

major driver, as identified by the statistical models, of ozone concentration. Note that
the value is skyrocketing for the region EA when specific humidity is the 2nd predictor,
4 times the value of IPSL-CM5A-MR/WRF, the lower increase. CNRM-CM5-LR/RCA4
presents the 2nd lowest increase.

On the contrary the lower increase of the summer temperature and sometimes a de-20

crease of the incoming short wave radiation amount (e.g. IPSL-CM5A-MR/WRF in NI)
are associated to lower ozone concentration changes for IPSL-CM5A-MR/WRF and
CNRM-CM5-LR/RCA4 for FR, IP, ME and NI (cf. Table 3).

On the Fig. S5, we can point out the particular pattern of the MPI-ESM-LR/CCLM
distribution for the NI region: a wide and flat Gaussian with large tails. The ozone rise25

would be more pronounced for the upper quantile which depicts more extreme polluted
episode.

Overall the climate penalty is confirmed even if some regional climate models stand
out of the distribution, such as CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-
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Mk3-6-0/RCA4 which should therefore be considered for further deterministic projec-
tions.

5 Conclusions

An alternative technique to assess the robustness of projections of the impact of cli-
mate change on air quality has been introduced. Using a training dataset consisting5

of long-term deterministic regional climate and air quality projections, we could build
simple statistical models of the response of ozone and particulate pollution to the main
climate drivers for several regions of Europe. Applying such statistical models to an
ensemble of regional climate projection leads to the development of an ensemble of
proxy projections of air quality under various future climate forcing. The assessment of10

the spread of the ensemble of proxy projections allows inferring the robustness of the
impact of climate change, as well as selecting a subset of climate models to be used in
priority for future explicit air quality projections, therefore proposing a smart exploration
of the ensemble.

The main climate drivers that were identified are (i) for PM2.5: the boundary layer15

depth and the near surface temperature and (ii) for ozone: the near surface tempera-
ture and the incoming short wave radiation except for Eastern Europe where specific
humidity is the second predictor. The skill of the statistical models depends on the
regions of Europe and the pollutant.

For PM2.5 and the regions Eastern Europe (EA) and Mid Europe (ME), a bivariate20

linear least square captures about 50 % of the variance. But for British Isles (BI) and
Scandinavia (SC), where air pollution is largely driven by long range transport, such
a simple and local approach is not able to reproduce the variability of pollutant concen-
trations.

The ozone concentrations are well reproduced by the statistical model for the fol-25

lowing regions: Eastern Europe (EA), France (FR), Iberian Peninsula (IP), Mid Eu-
rope (ME) and Northen Italy (NI). The meteorological variables are not discriminating
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enough to depict the pollutant concentration for Mediterranean region. For the regions
where the performances of the statistical model were considered satisfactory, a proxy
of the future pollutant concentrations could be estimated (i.e. (i) EA, ME and NI, (ii) EA,
FR, IP, ME and NI).

An overall climate benefit for PM2.5 was found in the proxy ensemble of climate5

and air quality projections. The ensemble mean change is −0.96 (standard deviation:
±0.18), −1.00 (±0.37), −1.16 (±0.23) µgm−3, for resp. EA, ME and NI. This beneficial
impact of climate change for particulate matter pollution is in agreement with the de-
terministic projections of Huszar et al. (2011), Juda-Rezler et al. (2012), Colette et al.
(2013) but in opposition to Manders et al. (2012). These differences could be partly ex-10

plained by the different time windows (i.e. 2060–2041 vs. 2100–2071), climate scenario
(i.e. A1B which is similar to RCP6.0 vs. RCP8.5) and pollutant (i.e. PM10 vs. PM2.5).

For all the selected regions a robust climate penalty on ozone was identified: 10.11
(±3.22), 8.23 (±2.06), 9.23 (±1.13), 6.41 (± 2.14), 7.43 (±2.02) µgm−3 for resp. EA,
FR, IP, ME and NI. This finding is in line with previous studies (Meleux et al., 2007;15

Huszar et al., 2011; Katragkou et al., 2011; Jiménez-Guerrero et al., 2012; Juda-Rezler
et al., 2012; Langner et al., 2012a, b; Colette et al., 2013, 2015; Hedegaard et al., 2013;
Varotsos et al., 2013).

The robustness of the impact of climate change on air quality inferred from this proxy
of ensemble cannot be considered as a very definitive statement given that the under-20

lying statistical model does not capture all the variance of the air quality response to
climate change. The somewhat simple structure of the statistical model and the use
of a single set of deterministic projection for its training/validation, are additional limita-
tions of the approach. However, besides this information on the robustness, this proxy
approach also allows pointing out regional climate models that should be investigated25

in priority in the context of deterministic model projection, therefore proposing a smart
exploration of the ensemble of projections.
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Finally, this method, applied here for air quality projection opens also the way for such
approaches in other climate impact studies, where quantifying uncertainties using low
computational demand is desirable.

The Supplement related to this article is available online at
doi:10.5194/acpd-15-28361-2015-supplement.5
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Table 1. Statistical models per region that explain the average PM2.5 concentrations during
1976–2005.

Regions R2 Meteorological variable 1 Meteorological variable 2

BI 0.199 PBL-height Surface wind
IP 0.139 PBL-height Specific humidity
FR 0.222 PBL-height Near surface temperature
ME 0.494 PBL-height Near surface temperature
SC 0.196 Specific humidity Incoming short wave radiation
NI 0.347 PBL-height Near surface temperature
MD 0.141 PBL-height Surface wind
EA 0.516 PBL-height Near surface temperature
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Table 2. Statistical models per region that explain the daily maximum summer ozone levels
during 1976–2005.

Regions R2 Meteorological variable 1 Meteorological variable 2

BI 0.225 Incoming short wave radiation Specific humidity
IP 0.482 Near surface temperature Incoming short wave radiation
FR 0.494 Near surface temperature Incoming short wave radiation
ME 0.620 Near surface temperature Incoming short wave radiation
SC 0.126 Near surface temperature PBL-height
NI 0.560 Incoming short wave radiation Near surface temperature
MD 0.311 Near surface temperature Surface wind
EA 0.683 Near surface temperature Specific humidity
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Table 3. Predicted concentrations of summertime ozone and PM2.5 per selected regions and
per model. The ensemble mean and standard deviation are also calculated.

RCP8.5 2071–2100 Delta (future–historical)

Ozone max PM2.5

GCM/RCM\Regions EA FR IP ME NI EA ME NI
CNRM-CM5-LR/RCA4 6.56 5.26 8.05 3.76 5.14 −0.76 −0.87 −0.94
CSIRO-Mk3-6-0/RCA4 12.47 10.82 10.55 8.85 9.61 −1.32 −1.90 −1.51
CanESM2/RCA4 17.22 12.06 11.88 11.23 11.27 −0.94 −1.39 −1.61
EC-EARTH/RACMO2 7.76 8.75 8.81 6.60 6.97 −1.19 −0.80 −1.10
EC-EARTH/RCA4 11.57 9.77 8.82 7.65 8.01 −0.82 −0.74 −1.06
GFDL-ESM2M/RCA4 8.40 5.71 8.25 4.33 6.25 −1.07 −1.07 −0.91
IPSL-CM5A-MR/RCA4 13.34 9.39 10.10 7.25 9.59 −0.99 −0.92 −1.42
IPSL-CM5A-MR/WRF 4.77 5.15 7.57 3.70 3.28 −1.05 −1.37 −1.07
MIROC5/RCA4 10.93 7.90 9.24 6.40 7.16 −0.97 −0.81 −1.21
MPI-ESM-LR/CCLM 7.79 7.33 9.59 4.33 7.34 −0.69 −0.49 −0.87
MPI-ESM-LR/RCA4 10.64 8.14 9.17 5.89 7.65 −0.94 −0.77 −1.19
NorESM1-M/RCA4 9.89 8.42 8.75 6.90 6.89 −0.77 −0.84 −1.08
Ensemble Mean 10.11 8.23 9.23 6.41 7.43 −0.96 −1.00 −1.16
Ensemble Standard Deviation 3.22 2.06 1.13 2.14 2.02 0.18 0.37 0.23
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Figure 1. The left column represents daily average PM2.5 concentrations for the historical
(1976–2005) (a), the end of the century (RCP8.5 – 2071–2100) (b) and the difference be-
tween the future and the historical (c). The statistical significance of this difference is evaluated
by a t test and represented by a black point. The right column presents the same figure for daily
maximum ozone projections.
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Figure 2. Linear model evaluation for PM2.5 (left) and ozone (right). The x axis represents the
Normalized Mean Square Error applied to the delta (future minus historical) of the linear model
and chimere. The y axis represents the R2 of the statistical model (training period).
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Figure 3. The left figure presents the proxy of ensemble projections for daily average de-
seasonnalised PM2.5 concentrations in Eastern Europe. The right figure represents the proxy
for daily maximum de-seasonnalised summer ozone for Eastern Europe. For both figures, the
shaded background represents the evolution of pollutants estimated by the statistical models.
The contours are representing the regional climate projections and the triangles their mean.
The black dashed contour represents the historical – IPSL-CM5A-MR/WRF – and the square
its mean.

28391

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/28361/2015/acpd-15-28361-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/28361/2015/acpd-15-28361-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 28361–28393, 2015

Uncertainty in climate
impacts on air quality

V. E. P. Lemaire et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 4. The left figure represents, for each regional climate model the probability density
function (PDF) of the concentrations estimated with the bivariate linear model at the end of
the century minus the estimated concentrations of the historical period for daily average de-
seasonnalised PM2.5 concentrations in Eastern Europe. The right figure presents the results
for daily maximum de-seasonnalised summer ozone for Eastern Europe.
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Figure 5. The first column of the panel represents the historical distribution of the meteorologi-
cal variables identified by our statistical models as the two major drivers (a PBL Height; b near
surface temperature) for PM2.5 in Eastern Europe. The second column represents the histor-
ical JJA distribution of the two main drivers for summer ozone (a near surface temperature;
b specific humidity).
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